skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ObjectiveExtracting social determinants of health (SDoHs) from medical notes depends heavily on labor-intensive annotations, which are typically task-specific, hampering reusability and limiting sharing. Here, we introduce SDoH-GPT, a novel framework leveraging few-shot learning large language models (LLMs) to automate the extraction of SDoH from unstructured text, aiming to improve both efficiency and generalizability. Materials and MethodsSDoH-GPT is a framework including the few-shot learning LLM methods to extract the SDoH from medical notes and the XGBoost classifiers which continue to classify SDoH using the annotations generated by the few-shot learning LLM methods as training datasets. The unique combination of the few-shot learning LLM methods with XGBoost utilizes the strength of LLMs as great few shot learners and the efficiency of XGBoost when the training dataset is sufficient. Therefore, SDoH-GPT can extract SDoH without relying on extensive medical annotations or costly human intervention. ResultsOur approach achieved tenfold and twentyfold reductions in time and cost, respectively, and superior consistency with human annotators measured by Cohen's kappa of up to 0.92. The innovative combination of LLM and XGBoost can ensure high accuracy and computational efficiency while consistently maintaining 0.90+ AUROC scores. DiscussionThis study has verified SDoH-GPT on three datasets and highlights the potential of leveraging LLM and XGBoost to revolutionize medical note classification, demonstrating its capability to achieve highly accurate classifications with significantly reduced time and cost. ConclusionThe key contribution of this study is the integration of LLM with XGBoost, which enables cost-effective and high quality annotations of SDoH. This research sets the stage for SDoH can be more accessible, scalable, and impactful in driving future healthcare solutions. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. In multimodal machine learning, effectively addressing the missing modality scenario is crucial for improving performance in downstream tasks such as in medical contexts where data may be incomplete. Although some attempts have been made to retrieve embeddings for missing modalities, two main bottlenecks remain: (1) the need to consider both intra- and inter-modal context, and (2) the cost of embedding selection, where embeddings often lack modality-specific knowledge. To address this, the authors propose MoE-Retriever, a novel framework inspired by Sparse Mixture of Experts (SMoE). MoE-Retriever defines a supporting group for intra-modal inputs—samples that commonly lack the target modality—by selecting samples with complementary modality combinations for the target modality. This group is integrated with inter-modal inputs from different modalities of the same sample, establishing both intra- and inter-modal contexts. These inputs are processed by Multi-Head Attention to generate context-aware embeddings, which serve as inputs to the SMoE Router that automatically selects the most relevant experts (embedding candidates). Comprehensive experiments on both medical and general multimodal datasets demonstrate the robustness and generalizability of MoE-Retriever, marking a significant step forward in embedding retrieval methods for incomplete multimodal data. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  3. An interesting behavior in large language models (LLMs) is prompt sensitivity. When provided with different but semantically equivalent versions of the same prompt, models may produce very different distributions of answers. This suggests that the uncertainty reflected in a model's output distribution for one prompt may not reflect the model's uncertainty about the meaning of the prompt. We model prompt sensitivity as a type of generalization error, and show that sampling across the semantic concept space with paraphrasing perturbations improves uncertainty calibration without compromising accuracy. Additionally, we introduce a new metric for uncertainty decomposition in black-box LLMs that improves upon entropy-based decomposition by modeling semantic continuities in natural language generation. We show that this decomposition metric can be used to quantify how much LLM uncertainty is attributed to prompt sensitivity. Our work introduces a new way to improve uncertainty calibration in prompt-sensitive language models, and provides evidence that some LLMs fail to exhibit consistent general reasoning about the meanings of their inputs. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  4. We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  5. Abstract ObjectivesThe predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images. Materials and MethodsIn this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset. ResultsOur model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement). Discussion and ConclusionThe deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction. 
    more » « less
  6. Abstract Large language models (LLMs) have been shown to have significant potential in few-shot learning across various fields, even with minimal training data. However, their ability to generalize to unseen tasks in more complex fields, such as biology and medicine has yet to be fully evaluated. LLMs can offer a promising alternative approach for biological inference, particularly in cases where structured data and sample size are limited, by extracting prior knowledge from text corpora. Here we report our proposed few-shot learning approach, which uses LLMs to predict the synergy of drug pairs in rare tissues that lack structured data and features. Our experiments, which involved seven rare tissues from different cancer types, demonstrate that the LLM-based prediction model achieves significant accuracy with very few or zero samples. Our proposed model, the CancerGPT (with ~ 124M parameters), is comparable to the larger fine-tuned GPT-3 model (with ~ 175B parameters). Our research contributes to tackling drug pair synergy prediction in rare tissues with limited data, and also advancing the use of LLMs for biological and medical inference tasks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Free, publicly-accessible full text available December 1, 2025
  8. Free, publicly-accessible full text available January 1, 2026
  9. Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suiciderelated social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions. 
    more » « less